The Benefits Of An RGB Laser

Posted by Hadraj Youssef On Monday, December 16, 2013 0 Comments
By Cornelia White


An RGB laser is that laser that emits three primary colors of light. These are red light, green light and blue light, hence the acronym RGB. These can be produced in a single beam for all the three colors or separate beams for each of the color. Through the process of optical amplification of stimulated emissions of electromagnetic radiations, it is possible to obtain many more colors from these primary colors.

RGB lasers are being exploited as an alternative to arc lamps sources (beamers). Although arc lamps have been used for a long period as a source of beams particularly because they are much cheaper, they suffer from setbacks such as limited lifetime, high wall-plug efficiency is impossible, poor image quality as a result of poor spatial coherence and the fact that available color space is not wide enough. For this reasons, the former is becoming more popular RGB sources are much more popular.

The success of these lasers has to do with the coherency of wavelengths. They are both coherent in time and space to each other hence the possibility of inferences. The change of phase properties happens at the same time over a long distance making them preferred for entertainment and other professional uses.

The red, green and blue colors produced by these sources normally have very narrow optical bandwidth making them similar to monochromatic ones. On mixing, the resulting images are normally very clear as other monochromatic sources of beams. It is not surprising that cathode tube displays, printers and even lamp-based beams are now made of them.

RGB sources however suffer from a major setback given that the power level that is emitted is usually of low level. Most cinema projectors for instance require up to 10 W per color or even more. This level of power sufficiency, maturity or even cost effectiveness is still beyond the existing RGB scanners. When it comes to beam quality, these machines have to operate with high quality beams for them to perform effectively.

External optical modulators are normally used in these types of beamers although RGB sources are fitted with power-modulators for better signals in situations where the optical modulator use is made impossible as a result of low power miniature devices. Laser diodes for instance are used to achieve modulation bandwidth between 10 to 100 megahertz or even much higher resolutions.

The construction of RGB lasers can be achieved in several manners with the most common ones involving the use of three different lasers with each producing one of the three colors. This method of visible beams however comes with several limitations in comparison to the other methods that employ the use of near infrared rays.

The other method is the use of an infrared solid-state laser where a single near-infrared laser generate a single color that then undergoes through different stages of nonlinear frequency conversion to produce the three colored beams. There are many other schemes of producing the desired wave lengths such as through combination of parametric oscillators, some frequency mixers and even frequency doublers in addition to other methods.

With the technological advancement, better performing RGB laser machines are being produced. With the current attempt to introduce the fourth color in this type of laser, something that will even improve their performers for the better. The expert prediction is that these forms of lasers will be replacing the other forms of beamers.




About the Author:



0 Comments:

Post a Comment